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We have examined the solutions for the singlet density pfr) in the hierarchical equation connect- 
ing p ( r )  with the liquid direct correlation function c(r). In addition to the homogeneous solution 
p(r)  = pliquidr we exhibit a periodic solution which can coexist with the liquid solution. If the 
defining equation for this is linearized, we recover the bifurcation condition of Lovett and Buff. 
We stress the difference between the two treatments as that betweeen first- and second-order 
transitions. 

I t  turns out that the treatment presented here leads to the same periodic density as  that 
derived, using the hypernetted chain approximation, by Ramakrishnan and Yussouff in their 
theory of freezing. Invoking that approximation is shown thereby to be inessential. 

1 INTRODUCTION 

Lovett and Buff’ have recently revived interest in the question as to whpther 
classical statistical mechanical equations, such as the first member of the 
Born-Green-Yvon hierarchy which connects the singlet density p(r) and 
the liquid pair correlation function g(r),  can admit more than one solution 
for p for a given g. Actually, these workers focused on the equation relating 
p and the Ornstein-Zernike direct correlation function c(r )  of a liquid. This 
latter equation has been derived by a number of workers2s3 and has the 
advantage over the equation relating g(r)  and p(r) that no assumption of 
pairwise interactions need be invoked. 

t Permanent Address: GNSM-CNR, lstituto di Fisica Teorica dell’Universita, Trieste, 
Italy. 
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This equation relating p(r) and c(r), namely 

In p(rl) = dTzc(rlz)p(rz) + constant (1.1) 

is the central tool employed in the present work. The integrated form (1.1) 
has been discussed, for example, by L ~ v e t t . ~  We shall demonstrate below, 
by direct solution of this equation, that for a given liquid direct correlation 
function, Eq. (1.1) admits not only a solution for which the singlet density 
is uniform, with value p(r) = p I ,  but also a co-existing periodic solution 
pp(r). If we then linearize our equation determining pp(r), we regain the 
bifurcation condition of Lovett and Buff.' 

We then go on to set up the free energy difference corresponding to the 
two types of singlet density. Somewhat surprisingly, by using the equation 
for p,(r) in this free energy, we find a result obtained earlier in a theory of 
freezing by Ramakrishnan and Yussouff,' which was derived by making 
use of the hypernetted chain approximation. The present work thereby 
shows that this approximation is inessential in their theory of freezing. 

s 

2 FREE ENERGY DIFFERENCE BETWEEN HOMOGENEOUS 
AND PERIODIC PHASES 

Evidently there is for a given liquid direct correlation function c(r) a solution 
of Eq. (1.1) for which p(r) is constant with a value p I  say. What is more 
important for our present purposes is to prove that a periodic solution 
pp(r) for the singlet density, for a given liquid c(r), also exists. 

To do this, we apply Eq. (1.1) to both the singlet densities pl and pp(r) 
and then subtract to find 

where it is assumed that the constants in Eq. (1.1) are equal for the two phases 
in coexistence. Since, by assertion, p p  is periodic, we expand in a Fourier 
series using the reciprocal lattice vectors G to obtain 

pp(r)  = po + V- '  C pG exp(iG. r) (2.2) 
GfO 

where V is the total volume. Inserting Eq. (2.2) into (2.1) and integrating over 
r2 yields 

E(0) + ( p l  V)-' pcE(G) exp(iG. r) (2.3) 
PI G+O 
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THEORY OF FREEZING 131 

where E(k) is the Fourier transform of c(i-). This Eq. (2.3) is, for a given set of 
Fourier components of the liquid direct correlation function, to be solved for 
the Fourier components pc of the singlet density. 

Without seeking a specific solution of Eq. (2.3), a matter which we shall 
refer to again below, it will be useful at this point to regard Eq. (2.1) as the 
Euler equation of a minimum free energy principle. Of course, the thermo- 
dynamic requirement for the two phases to be in equilibrium is that this free 
energy difference shall be zero. Actually, we shall work with the thermo- 
dynamic potential R, related to the Helmholtz free energy F and chemical 
potential p by 

R = F - N p .  (2.4) 
The Helmholtz free energy can be conveniently divided into two parts, one 
corresponding to free particles and the other taking account of the inter- 
particle interactions via the direct correlation function c(r). The first part 
is well known for uniform density6 and we merely take the free energy 
density over into the local density p(r). The second part is also available in 
essence, for example in Ref. 2, and thus we can write 

Performing the variation of AR with respect to pp(r) is readily verified to lead 
back to Eq. (2.1). 

At this stage, we insert the Fourier expansions (2.2) and (2.3) into (2.5) 
to find, with N = p1 V ,  

This is the desired expression for the free energy difference in terms of the 
Fourier components pc of the periodic density, and the volume change 
reflected in the difference between pl and po.  

The possibility of coexistence of homogeneous liquid and periodic phases 
is clear from Eq. (2.6) because of the balance between positive contributions 
from the first and third terms on the right-hand-side and the negative term 
from the volume change, provided the periodic phase has the higher density. 
That these terms are strongly coupled is clear from the highly non-linear 
nature of the Euler equation (2.3). The actual coexistence point is evidently 
determined by the properties of t (G) ,  including G = 0, linking the liquid 
structure intimately with the appearance of the periodic phase. 
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132 N. H. MARCH AND M. P. TOSl 

3 DISCUSSION AND SUMMARY 

The above discussion of Eqs. (2.6) and (2.3) has, of course, been focussed 
on what is, in principle, possible from the structure of these two equations. 
It is remarkable that the work of Ramakrishnan and Yussouff5 using as it 
does the hypernetted chain (HNC) approximation nevertheless leads to the 
same F.uler Eq. (2.3). Our work, based directly on Eq. (2.1), shows clearly 
that this use of HNC is inessential to their theory of freezing. However, a 
significant difference between their treatment and ours resides in the varia- 
tional principle from which the Euler equation derives. Our basic variation 
is of AQ in Eq. (2.5). Their variation is on an equation resembling, but not 
identical to, Eq. (2.6). This latter equation, in our treatment, already em- 
bodies the result for the periodic density determined by the non-linear 
Euler Eq. (2.3). The specific difference between our Eq. (2.6) and their form 
for ASZ is that they have an additional term of order (po - pl)  giving their 
result as 

This form is appealing because [l - ?(O)] is essentially the inverse com- 
pressibility of the liquid. Their work5 in fact shows how an explicit periodic 
solution, for a given liquid direct correlation function c(r), can be derived 
from Eq. (2.3). 

Our final comment concerns the relation of the non-linear Eq. (2.3) to the 
work of Lovett and Buff'34 on bifurcation. Whereas the above treatment is 
evidently describing a first-order transition, with a volume change and 
finite Fourier components pc actually at the freezing point, their work 
explores the condition under which the pc develop continuously from the 
homogeneous phase. The procedure they use corresponds to linearizing 
Eq. (2.3) which then has a solution of periodic form provided the condition 
(1 - pl?(G)) = 0 is satisfied. This corresponds in fact to the structure 
factor S(G)  = l / ( l  - prc'(G)) becoming infinite. This is an instability of the 
liquid phase. 
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THEORY OF FREEZING 133 

Note added in proof 

Since our work was completed, the closely related investigation of Haymet 
and Oxtoby ( J .  Chern. Phys., 74,2559, 198 1 )  has appeared. 
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